Table 1. Revised frequencies for 53 space groups
Not including 12 unoccupied space groups.

Space group	Number	Revised frequency	Space group	Number	Revised frequency
PI	1	610	14322	98	2
$P 2$	3	22	$P 3$	143	20
$P 2_{1}$	4	3914	$P 3_{1}$	144	31
C2	5	546	$P 3_{2}$	145	31
P222	16	14	R3	146	80
P222,	17	18	P321	150	10
$P 2_{1} 2_{1}{ }^{2}$	18	374	$P 3,21$	152	35
$P 2,2,2{ }_{3}$	19	6718	$P 321$	154	35
C222,	20	172	R32	155	46
C222	21	10	$P 6_{1}$	169	30
1222	23	14	$P 6_{5}$	170	30
$I 2,2,21$	24	10	Pb_{2}	171	5
$P 4$	75	2	Pb_{4}	172	5
$P 4_{1}$	76	54	Pb_{3}	173	66
$P 4_{2}$	77	6	P622	177	4
$\mathrm{P4}_{3}$	78	54	P6,22	178	7
14	79	24	$P 6{ }_{5} 22$	179	7
I43	80	18	$\mathrm{Pb}_{2} 22$	180	5
$P 422$	89	2	$\mathrm{P6}_{4} 22$	181	5
P42, 2	90	8	$\mathrm{P6}_{3} 22$	182	12
$P 4,22$	91	4	123	197	6
$P 4,2,2$	92	145	P2,3	198	30
$\mathrm{P4}_{4} 22$	93	4	F432	209	2
$P 4_{2} 2_{1}{ }^{2}$	94	14	$F 4,32$	210	6
$\mathrm{P4}_{3} 22$	95	4	$P 432$	212	2
$P 4{ }_{3}{ }^{2} 2$	96	145	$P 4$, 32	213	2
1422	97	4			

Table 2. The 12 space groups with the highest frequencies

Space group	Number of entries	Percent of total	Space group	Number of entries	Percent of total
$P 2_{1} / \mathrm{c}$	10450	29.2	$P 1$	610	1.7
$P 2,2,2{ }_{1}$	6718	18.8	Pnma	548	1.5
$P{ }^{-1}$	3986	$11 \cdot 1$	C2	546	1.5
$P 1_{1}$	3914	10.9	Pram_{1}	513	1.4
C2/c	1930	$5 \cdot 4$	$P 2 \mathrm{l}_{2} \mathrm{l}^{2}$	374	1.0
Pbca	1261	$3 \cdot 5$	Pbon	341	1.0

frequency of occurrence for each of the 230 space groups. This file is based on structures that have been reported in the literature.

However, for some compounds a space-group determination has an added bonus in that a second space-group determination is automatically made. Thus, when Shoemaker, Schomaker, Donohue \& Corey (1950) estab-
lished the space group of L-threonine as $P 2_{1} 2_{1} 2_{1}$ they automatically established the space group of D-threonine also as $P 2_{1} 2_{1} 2_{1}$, without ever seeing any of that substance. On the reasonable assumption that, because we are concerned here with organic molecules, all of the 3359 crystals in the file that were found to have space group $P 2,22_{1}$ will have a corresponding enantiomer with that space group, so the frequency should be doubled. This same situation will obtain for the other 64 space groups that contain no symmetry operations of the second kind. These are those space groups belonging to point groups $1,2,222,4,422$, $3,32,6,622,23$ and 432. In the case of the ten enantiomeric pairs, for example, $P 4_{1}$ and $P 4_{3}$, for which 47 crystals were found for the former, and seven for the latter, the results should be combined, to give 54 for each for that pair; similar calculations were made for the other nine pairs. For the remaining space groups the number of entries should be doubled. The revised frequencies are presented in Table 1. This table should be combined with the unrevised values of Table 1 of Mighell et al. to give the complete set of frequencies for the 230 space groups. The total number of crystals is increased from 29059 to 35771.

In the unlikely event that two different sets of investigators reported determinations, say, of D-tartaric acid in one laboratory and L-tartaric acid from a second laboratory, the space group for both will already be in the file, and the frequency number for $P 2_{1}$ will be over-revised. I believe that the chance that this has happened is very small indeed.

The rank order of the first five most populous space groups is changed, with $P 2,2,2$ now in second place instead of $P \overline{1}$. The first 12 in the list are presented in Table 2. Each of the remaining 218 space groups has less than 1% of the total.

The precautionary remarks of Mighell et al. still, of course, apply.

I thank Dr Richard E. Marsh for interesting suggestions.

References

Mighell, A. D., Himes, V. L. \& Rodgers, J. R. (1983). Acta Cryst. A39, 737-740.
NBS Crystal Data Identification File (1982). A magnetic tape of crystal data distributed by the JCPDS-International Center for Diffraction Data, 1601 Park Lane, Swarthmore, PA 19081, USA. Shoemaker, D. P., Schomaker, V., Donohue, J. \& Corey, R. B. (1950). J. Am. Chem. Soc. 72, 2328-2349.

Acta Cryst. (1985). A41, 204-206
A comment on the calculation of rocking curves near the critical voltage in electron diffraction. By M . David and R. Gevers, Rijksuniversitair Centrum Antwerpen, Groenenborgerlaan 171, 2020 Antwerpen, Belgium and H. Stumpp, Institut für Angewandte Physik der Universität Tübingen, Auf der Morgenstelle 12, 7400 Tübingen, Federal Republic of Germany
(Received 12 March 1984; accepted 10 October 1984)

Abstract

Several authors have reported the occurrence of a sharp peak doublet in certain rocking curves calculated for voltages near the critical voltage in electron diffraction. It is

shown that such peaks are only artefacts due to the use of an approximation that becomes invalid under illumination conditions for which the main Bloch waves are nearly degenerate.

Sellar, Imeson \& Humphreys (1980) have published numerically calculated rocking curves of the 2 g diffracted intensity ($I_{2 \mathrm{~g}}$) when an electron beam is incident on a crystal foil oriented so that only systematic reflections $n g$ are important (g: reciprocal- lattice vector), the accelerating voltage being very close to the 'second-order critical voltage'. They reported, among other things, the occurrence of two sharp intensity peaks at orientations very close to the second-order Bragg orientation and positioned symmetrically with respect to the latter. Such peaks have never been observed. Sellar et al. attribute this to the extreme narrowness of the peaks.

Stumpp (1983) obtained similar curves at a third-order critical voltage, but he supposed that the peaks were mathematical artefacts since they do not appear if certain reasonable sets of absorption potentials are taken into account.

We wish to point out here that such peaks actually do not exist: their occurrence in certain calculated rocking curves is due to the use of an expression for the diffracted amplitudes [see e.g. Sellar et al., 1980, equation (2)], which is erroneous when absorption is taken into account.

The wavefunction in the crystal, the Bloch waves and the amplitude of the diffracted beams are given by, respectively,

$$
\begin{gather*}
\psi(\mathbf{r})=\sum_{j} c_{j} \varphi_{j}(\mathbf{r}), \quad \varphi_{j}(\mathbf{r})=\sum_{n} C_{n}^{j} \exp i 2 \pi\left(\mathbf{k}^{j}+n \mathbf{g}\right) \cdot \mathbf{r} \tag{1a}\\
\psi_{n \mathbf{g}}(z)=\sum_{j} c_{j} C_{n}^{j} \exp i 2 \pi k_{z}^{j} z \tag{1b}
\end{gather*}
$$

(z : depth under the entrance surface), where $C_{n}^{j}, n=$ $0,1, \ldots$, are the components of the j th eigenvector of the well known 'dynamical matrix' while the 'excitation coefficients' c_{j} are found from

$$
\begin{equation*}
\sum_{j} c_{j} C_{n}^{j}=\delta_{n 0} \tag{1c}
\end{equation*}
$$

Without absorption the Bloch waves are orthonormal:

$$
\begin{equation*}
\sum_{n} C_{n}^{j^{*}} C_{n}^{k}=\delta_{j k} \tag{2a}
\end{equation*}
$$

whence

$$
\begin{equation*}
c_{j}=C_{0}^{j *} . \tag{2b}
\end{equation*}
$$

However, when absorption is taken into account phenomenologically by adding a small imaginary term $i V^{\prime}(\mathbf{r})$ to the crystal potential $V(\mathbf{r})$, then (2) does not hold any more. As a matter of fact, the origin of reciprocal space being chosen so that the Fourier coefficients $V_{n g}, V_{n g}^{\prime}$ of $V(\mathbf{r}), V^{\prime}(\mathbf{r})$ are real (see e.g. Serneels, David \& Gevers, 1975), the dynamical matrix with absorption is still symmetric ($S=\tilde{S}$) and it is easily seen, using some matrix algebra, that ($1 c$) then yields

$$
\begin{equation*}
c_{j}=C_{0}^{j} /\left[\sum_{n}\left(C_{n}^{j}\right)^{2}\right], \tag{3}
\end{equation*}
$$

where c_{j} may still be interpreted as an 'excitation coefficient' if the eigenvectors of the dynamical matrix are normalized to one, i.e. $\sum_{n}\left|C_{n}^{j}\right|^{2}=1$.

David, Gevers \& Serneels $(1976,1977)$ have discussed at length the influence of absorption on the critical voltage effect for a systematic row, treating the term $i V^{\prime}(\mathbf{r})$ as a perturbation. It was found that ordinary degenerate perturbation theory led to divergences due to the non-hermitian
character of the dynamical matrix S when absorption is included. The divergences could be overcome by 'straining' the parameters representing the illumination conditions (i.e. a form of renormalization of the perturbation series). As a result it could be shown that the critical voltage V_{c} is slightly shifted due to the absorption, that there is a twofold degeneracy at V_{c} for two orientations extremely close and symmetrical with respect to the exact 2 g Bragg orientation, and that the dynamical matrix is non-diagonalizable at these degeneracies (i.e. its Jordan canonical form contains a non-zero nilpotent). The latter implies that the eigenvectors of S corresponding to the twofold degenerate eigenvalue collapse.

Furthermore, it was shown that, under illumination conditions close to the 'critical' ones, the latter eigenvectors (denoted by, say, X_{2}, X_{3}) can be expressed exactly in the form

$$
\begin{equation*}
X_{2}=\cos \Phi Y \mp \sin \Phi Z, \quad X_{3}=\mp \sin \Phi Y-\cos \Phi Z, \tag{4}
\end{equation*}
$$

where Y and Z are vectors that remain practially constant when the illumination conditions are slightly varied, while the complex angle $\Phi=\Phi^{\prime}+i \Phi^{\prime \prime}$ may vary drastically and accounts completely for the singular behaviour of X_{2} and X_{3} at the degeneracies. In fact it is a very good approximation to replace Y and Z in (4) by the eigenvectors that would correspond to the degenerate eigenvalue if absorption were neglected. The leading contribution to the amplitude $\psi_{2 g}\left[\right.$ which comes from $\varphi_{2}(\mathbf{r})$ and $\left.\varphi_{3}(\mathbf{r})\right]$ can then be written as

$$
\begin{align*}
\psi_{2 \mathbf{g}}^{(2,3)}= & {\left[\exp i \pi\left(k_{z}^{2}+k_{z}^{3}\right) z\right][a \cos \pi \sigma z} \\
& +(b \cos 2 \Phi+c \sin 2 \Phi) \sin \pi \sigma z], \\
\sigma= & k_{z}^{2}-k_{z}^{3}, \tag{5}
\end{align*}
$$

where a, b and c are nearly constant $[O(|a|)=0 \cdot 1$, $O(|b|,|c|)=1] . \dagger$ On the other hand, if $(2 b)$ is used instead of (3) one finds an expression of the form

$$
\begin{align*}
\psi_{2 \mathrm{~g}}^{(2,3)}= & {\left[\exp i \pi\left(k_{z}^{2}+k_{z}^{3}\right) z\right]\left[\left(a+i a^{\prime} \tanh 2 \Phi^{\prime \prime}\right) \cos \pi \sigma z\right.} \\
& \left.+\frac{b \cos 2 \Phi^{\prime}+c \sin 2 \Phi^{\prime}}{\cosh 2 \Phi^{\prime \prime}} \sin \pi \sigma z\right] \tag{6}
\end{align*}
$$

where $a^{\prime} \simeq 2$. It is clear that (5) and (6) would be the same if Φ were real. From the expression for $\Phi^{\prime \prime}$ derived by David et al. (1977), one can see that putting $\Phi^{\prime \prime}=0$ is in fact an acceptable approximation except, however, in a very narrow voltage and orientation interval around the conditions for degeneracy $(\sigma=0)$. At the degeneracies $\Phi^{\prime \prime}$ becomes infinite (describing the collapse of X_{2} and X_{3}) and the second term in (5) becomes a limit $0 \times \infty$. Expression (6) then gives entirely different values and leads in particular to the erroneous sharp peak doublet shown by Sellar et al. Moreover, it can be verified that the position of those peaks, for voltages up to 5 or 10 kV away from the critical voltage, does correspond to a maximum of $\Phi^{\prime \prime}$, as expected from (6). The same arguments apply for higher-order critical voltage effects.

$$
\dagger O(|x|) \equiv \text { the order of magnitude of } x .
$$

Fig. 1. Calculated rocking curve (temperature 356 K) for copper 111; seven-beam calculation ($2 \overline{2} 2, \ldots, 444$). $V_{000}=16 \cdot 00, V_{11}=$ $11.68, V_{222}=5 \cdot 28, V_{333}=2.63, V_{444}=1 \cdot 25, V_{555}=0.61, V_{000}^{1}=$ $1.50, V_{111}^{\mathrm{I}}=0.74, V_{222}^{\mathrm{I}}=0.46, V_{333}^{\mathrm{I}}=0.38, V_{444}^{\mathrm{I}}=0.22, V_{555}^{\mathrm{I}}=$ $0 \cdot 11$.

We therefore believe that the anomalous peaks predicted by Sellar et al. (1980) are mathematical artefacts. The form
of the main contribution to $I_{2 \mathrm{~g}}$ near the critical voltage does not differ from 'the usual shape-transform type', as follows from (5) and from the fact that both $\cos 2 \Phi$ and $\sin 2 \Phi$ are proportional to σ^{-1}. Fig. I shows a calculated rocking curve that agrees very well with their experimental results.

The authors wish to thank Dr H. Matsuhata for a stimulating discussion.

References

David, M., Gevers, R. \& Serneels, R. (1976). Phys. Status Solidi B, 74, 359-373.
David, M., Gevers, R. \& Serneels, R. (1977). Phys. Status Solidi B, 79, 215-230.
Sellar, J. R., Imeson, D. \& Humphreys, C. J. (1980). Acta Cryst. A36, 686-696.
Serneels, R., David, M. \& Gevers, R. (1975). Phys. Status Solidi B, 72, 123-133.
Stumpp, H. (1983). Proc. Seventh Int. Conf. High Voltage Electron Microscopy, Berkeley, edited by R. M. Fisher, R. Gronsky \& K. H. Westmacott, pp. 89-92. Washington: Electron Microscopy Society of America.

