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Table 1. Revised frequencies for 53 space groups 

Not including 12 unoccupied space groups. 

Space Revised Space Revised 
group Number frequency group Number frequency 
P1 1 610 I4322 98 2 
P2 3 22 P3 143 20 
P21 4 3914 P3t 144 31 
C2 5 546 P32 145 31 
P222 16 14 R3 146 80 
P222, 17 18 P321 150 10 
P21212 18 374 P3t21 152 35 
P212121 19 6718 P3221 154 35 
C2221 20 172 R32 155 46 
C222 21 10 P61 169 30 
I222 23 14 P6 s 170 30 
I2t2121 24 10 P62 171 5 
P4 75 2 P64 172 5 
P41 76 54 P63 173 66 
P42 77 6 P622 177 4 
P43 78 54 P6122 178 7 
14 79 24 P6322 179 7 
143 80 18 P6222 180 5 
P422 89 2 P6422 181 5 
P42 t 2 90 8 P6322 182 12 
P4122 91 4 123 197 6 
P41212 92 145 P2~3 198 30 
P4222 93 4 F432 209 2 
P422,2 94 14 F4132 210 6 
P4322 95 4 P4332 212 2 
P432t2 96 145 P4t32 213 2 
I422 97 4 

Table 2. The 12 space groups with the highest frequencies 

Number Number 
Space of Percent Space of Percent 
group entries of total group entries of total 
P21/c 10450 29.2 PI 610 1-7 
P212,2, 6718 18.8 Pnma 548 1 "5 
P1 3986 1 I. I C2 546 1 '5 
P21 3914 10.9 Pna21 513 !.4 
C2/c 1930 5-4 P2t212 374 1.0 
Pbca 1261 3"5 Pbcn 341 1.0 

lished the space group of L-threonine as P2~2~2~ they 
automatically established the space group of D-threonine 
also as P2~2~21, without ever seeing any of that substance. 
On the reasonable assumption that, because we are con- 
cerned here with organic molecules, all of the 3359 crystals 
in the file that were found to have space group P212~2~ will 
have a corresponding enantiomer with that space group, 
so the frequency should be doubled. This same situation 
will obtain for the other 64 space groups that contain no 
symmetry operations of the second kind. These are those 
space groups belonging to point groups 1, 2, 222, 4, 422, 
3, 32, 6, 622, 23 and 432. In the case of the ten enantiomeric 
pairs, for example, P4~ and P43, for which 47 crystals were 
found for the former, and seven for the latter, the results 
should be combined, to give 54 for each for that pair; 
similar calculations were made for the other nine pairs. For 
the remaining space groups the number of entries should 
be doubled. The revised frequencies are presented in Table 
1. This table should be combined with the unrevised values 
of Table 1 of Mighell et al. to give the complete set of 
frequencies for the 230 space groups. The total number of 
crystals is increased from 29 059 to 35 771. 

In the unlikely event that two different sets of inves- 
tigators reported determinations, say, of D-tartaric acid in 
one laboratory and L-tartaric acid from a second laboratory, 
the space group for both will already be in the file, and the 
frequency number for P2~ will be over-revised. I believe 
that the chance that this has happened is very small indeed. 

The rank order of the first five most populous space 
groups is changed, with P2~2~2~ now in second place in- 
stead of P1. The first 12 in the list are presented in Table 
2. Each of the remaining 218 space groups has less than 
1% of the total. 

The precautionary remarks of Mighell et al. still, of 
course, apply. 

I thank Dr Richard E. Marsh for interesting suggestions. 

frequency of occurrence for each of the 230 space groups. 
This file is based on structures that have been reported in 
the literature. 

However, for some compounds a space-group determina- 
tion has an added bonus in that a second space-group 
determination is automatically made. Thus, when 
Shoemaker, Schomaker, Donohue & Corey (1950) estab- 
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Abstract 

Several authors have reported the occurrence of a sharp 
peak doublet in certain rocking curves calculated for vol- 
tages near the critical voltage in electron diffraction. It is 

shown that such peaks are only artefacts due to the use of 
an approximation that becomes invalid under illumination 
conditions for which the main Bloch waves are nearly 
degenerate. 
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Sellar, Imeson & Humphreys (1980) have published 
numerically calculated rocking curves of the 2g diffracted 
intensity (I2g) when an electron beam is incident on a crystal 
foil oriented so that only systematic reflections ng are 
important (g: reciprocal- lattice vector), the accelerating 
voltage being very close to the 'second-order critical vol- 
tage'. They reported, among other things, the occurrence 
of two sharp intensity peaks at orientations very close to 
the second-order Bragg orientation and positioned sym- 
metrically with respect to the latter. Such peaks have never 
been observed. Sellar et al. attribute this to the extreme 
narrowness of the peaks. 

Stumpp (1983) obtained similar curves at a third-order 
critical voltage, but he supposed that the peaks were mathe- 
matical artefacts since they do not appear if certain reason- 
able sets of absorption potentials are taken into account. 

We wish to point out here that such peaks actually do 
not exist: their occurrence in certain calculated rocking 
curves is due to the use of an expression for the diffracted 
amplitudes [see e.g. Sellar et al., 1980, equation (2)], which 
is erroneous when absorption is taken into account. 

The wavefunction in the crystal, the Bloch waves and 
the amplitude of the diffracted beams are given by, respec- 
tively, 

O(r)=Y, c~¢j(r), C j ( r ) = ~  CJ, exp i 2 ¢ r ( W + n g ) . r  ( l a )  
j n 

~bng(Z) = E cjC~ exp i2~rk~z ( lb)  
J 

(z: depth under the entrance surface), where C~, n = 
O, 1 , . . . ,  are the components of the j th  eigenvector of the 
well known 'dynamical matrix' while the 'excitation 
coefficients' cj are found from 

E cjC~=6,,o. ( lc)  
J 

Without absorption the Bloch waves are orthonormal: 

Y'. CJ,, * C k = 8ik, (2a) 
n 

whence 

cj = CJo *. (2b) 

However, when absorption is taken into account 
phenomenologically by adding a small imaginary term 
iV'(r) to the crystal potential V(r), then (2) does not hold 
any more. As a matter of fact, the origin of reciprocal space 
being chosen so that the Fourier coefficients V,g, V'g of 
V(r), V'(r) are real (see e.g. Serneels, David & Gevers, 
1975), the dynamical matrix with absorption is still sym- 
metric ( S =  S) and it is easily seen, using some matrix 
algebra, that (1 c) then yields 

cj = C~o/[E ( C~)2], (3) 
rl 

where cj may still be interpreted as an 'excitation coefficient' 
if the eigenvectors of the dynamical matrix are normalized 
to one, i.e. E,, IcLI 2= 1. 

David, Gevers & Serneels (1976, 1977) have discussed at 
length the influence of absorption on the critical voltage 
effect for a systematic row, treating the term iV'(r) as a 
perturbation. It was found that ordinary degenerate per- 
turbation theory led to divergences due to the non-hermitian 

character of the dynamical matrix S when absorption is 
included. The divergences could be overcome by 'straining' 
the parameters representing the illumination conditions (i.e. 
a form of renormalization of the perturbation series). As a 
result it could be shown that the critical voltage Vc is slightly 
shifted due to the absorption, that there is a twofold 
degeneracy at Vc for two orientations extremely close and 
symmetrical with respect to the exact 2g Bragg orientation, 
and that the dynamical matrix is non-diagonalizable at these 
degeneracies (i.e. its Jordan canonical form contains a 
non-zero nilpotent). The latter implies that the eigenvectors 
of S corresponding to the twofold degenerate eigenvalue 
collapse. 

Furthermore, it was shown that, under illumination con- 
ditions close to the 'critical' ones, the latter eigenvectors 
(denoted by, say, X2, X3) can be expressed exactly in the 
form 

X2= cos @Yq:sin @Z, X3 = ~:sin q~Y-cos  @Z, 
(4) 

where Y and Z are vectors that remain practially constant 
when the illumination conditions are slightly varied, while 
the complex angle @ = @'+ i@" may vary drastically and 
accounts completely for the singular behaviour of X2 and 
)(3 at the degeneracies. In fact it is a very good approxima- 
tion to replace Y and Z in (4) by the eigenvectors that 
would correspond to the degenerate eigenvalue if absorp- 
tion were neglected. The leading contribution to the ampli- 
tude ~/t2g [which comes from ¢P2(r) and ~03(r)] can then be 
written as 

l] t(2 '3) - -  [exp iTr(kZz + k3z)Z][a cos ,n-trz 2 g  - -  

+ ( b  cos 2q~+c sin 2 ~ )  sin ~trz], 

o - = k ~ - k ~ ,  (5) 

where a, b and e are nearly constant [O([a])=O.1,  
O(Ib[, ]c]) = 1].t On the other hand, if (2b) is used instead 
of (3) one finds an expression of the form 

~0 (2'3) = [exp i~'(k2+ k~)z][ (a  + ia' tanh 2~")  cos Iro'z 2 g  
k 

b cos 2 ~ ' +  c sin 2 ~ '  "] 
Jr cosh 2q~" sin ~ro'z J,  (6) 

where a'-~ 2. It is clear that (5) and (6) would be the same 
if @ were real. From the expression for q~" derived by 
David et al. (1977), one can see that putting @"=0 is in 
fact an acceptable approximation except, however, in a 
very narrow voltage and orientation interval around the 
conditions for degeneracy (o-= 0). At the degeneracies @" 
becomes infinite (describing the collapse" of X2 and X3) 
and the second term in (5) becomes a limit 0 x oo. Expression 
(6) then gives entirely different values and leads in par- 
ticular to the erroneous sharp peak doublet shown by Sellar 
et al. Moreover, it can be verified that the position of those 
peaks, for voltages up to 5 or 10 kV away from the critical 
voltage, does correspond to a maximum of qb", as expected 
from (6). The same arguments apply for higher-order 
critical voltage effects. 

f O([x D = the order of magnitude of x. 
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Fig. 1. Calculated rocking curve (temperature 356 K) for copper ___ 
111 ; seven-beam calculation (222,. . . ,  444). V0o 0 = 16.00, Vlt ~ -- 
11-68, V222=5-28, V333=2.63, V444 = 1-25, V555=0.61, V~0o = 
1-50, Villi=0.74, V~22=0.46, V~33=0.38, VI,~4 =0"22, V1555= 
0-11. 

We therefore believe that the anomalous  peaks predicted 
by Sellar et al. (1980) are mathematical  artefacts. The form 

of the main contr ibut ion to IEg near the critical voltage does 
not differ from 'the usual shape-transform type',  as follows 
from (5) and f r o m t h e  fact that both cos 2qb and sin 2@ are 
proport ional  to o --~. Fig. 1 shows a calculated rocking curve 
that agrees very well with their experimental  results. 

The authors wish to thank Dr H. Matsuhata for a stimula- 
ting discussion. 
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